José Rodríguez, together with Guillermo Couto and Jorge Llinás, surprises us again with a new volume of the Small Animal Surgery collection, although this time he focuses on the application of bloodless surgery. The author and his colleagues use their wide experience to show readers the importance of ensuring appropriate haemostasis in surgical procedures.

The basic principles of haemostasis, their practical application in various clinical cases or the different techniques available are explained throughout the book, and the information is complemented by numerous images that will help the clinician to ensure haemostasis (making knots step by step, surgical procedures shown in sequences of images, etc.).

This work also stands out by including high-quality and very didactic videos, with which the reader will be able to gain valuable knowledge.
José Rodríguez, together with Guillermo Couto and Jorge Llinás, surprises us again with a new volume of the Small Animal Surgery collection, although this time he focuses on the application of bloodless surgery. The author and his colleagues use their wide experience to show readers the importance of ensuring appropriate haemostasis in surgical procedures.

The basic principles of haemostasis, their practical application in various clinical cases or the different techniques available are explained throughout the book, and the information is complemented by numerous images that will help the clinician to ensure haemostasis (making knots step by step, surgical procedures shown in sequences of images, etc.). This work also stands out by including high-quality and very didactic videos, with which the reader will be able to gain valuable knowledge.
Presentation of the book

“If you want different results, don’t keep doing the same thing”
Albert Einstein (1879-1955).

During a surgical procedure proper blood supply to the tissue must be maintained to ensure nutrition and oxygenation, but at the same time the surgical team must prevent the excessive intraoperative bleeding that will inevitably occur upon sectioning and dissecting the tissues. A balance must be struck between vascularisation and haemostasis to complete the operation without complications and enable both the tissue and the patient to make a favourable and rapid recovery.

The success of any surgical procedure depends on skills and abilities of the surgeon and his team to identify and manage bleeding precisely, efficiently and effectively before, during and after the procedure.

Any surgeon must be familiar with the normal coagulation process and why it can be affected, as well as the methods and techniques to achieve and maintain haemostasis during surgery and postoperatively. He must know about drugs that facilitate coagulation, mechanical, chemical, thermal and surgical methods that can be used to control bleeding, as well as how to identify and act in case of coagulation problems and postoperative bleeding.

In this book we have collated all the necessary information to approach and perform any surgical procedure with a minimum amount of bleeding possible, or controlling and minimising this complication. The normal coagulation process is reviewed, and the clinical implications of altering this process, how to detect the issue and how to manage it. The role of the anaesthetist is assessed, and the how drugs modify haemostasis and the control of bleeding. Common, effective and up-to-date new methods and techniques for the control of surgical bleeding are presented.

We are aware that many of the topics covered are already known to the readers, but we believe that it is never a bad thing to take another look and refresh one’s memory. However we also hope to provide new and useful information, and our experience in the control and management of haemorrhages. The purpose is to make surgery simpler and less complicated, reducing the stress on both surgeon and patient and enabling the fastest and best recovery possible.

We hope that the chapters that follow are of interest to you and that they can help you to increase your passion for surgery.

José Rodríguez
Guillermo Couto
Jorge Llinás
Authors

José Rodríguez, DVM, PhD
Graduate in Veterinary Medicine from the Complutense University of Madrid
Head Tutor of the Department of Animal Pathology, University of Zaragoza

Guillermo Couto, DVM, dipl. ACVIM
Graduate in Veterinary Medicine from the University of Buenos Aires
American diploma in Internal Medicine and Oncology
Tutor at the Department of Clinical Science at the Faculty of Veterinary Medicine
Oncology/Haematology Department at Ohio State University (Ohio, USA)

Jorge Llinás, DVM
Graduate in Veterinary Medicine from the University of Zaragoza
University specialist in Maxillofacial Surgery
Director and founder of the Valencia Sur Veterinary Hospital (Valencia, Spain)
President of the Spanish Society for Veterinary Laser and Electrosurgery
Collaborators

Sheila Aznar, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. Huellas Veterinary Centre (Jaca, Spain).

Beatriz Belda, DVM. Graduate in Veterinary Medicine from the University of Valencia.

Maria Borobia, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. Associate professor of the Department of Animal Pathology, University of Zaragoza.

Cristina Bonastre, DVM, PhD. Graduate in Veterinary Medicine from the University of Zaragoza Doctor in Veterinary Medicine from the University of Cáceres. Associate professor of the Department of Animal Pathology, University of Zaragoza.

Fausto Brandão, DVM, MSc., Cert. Spec. EaMIS. Graduate in Veterinary Medicine from the Technical University of Lisbon MSc. University Masters in CO2 laser Specialist International Veterinary Consultant for Karl Storz GmbH & Co. KG (Tuttlingen, Germany).

Roberto Bussadori, DVM, PhD. Graduate and Doctor of Veterinary Medicine from the University of Milan. European Doctorate in Veterinary Medicine. Director of the Gran Sasso Veterinary Clinic (Milan, Italy).

Gabriel Carbonell, DVM. Graduate in Veterinary Medicine from the Cardenal Herrera-CEU University of Valencia.

Vicente Cervera, DVM, Dipl. ACVR, Dipl. ECVDI. Graduate in Veterinary Medicine from the Cardenal Herrera-CEU University of Valencia. American and European diploma in Diagnostic Imaging Head of the Diagnostic Imaging Area at the Valencia Sur Veterinary Hospital.

Miguel Ángel de Gregorio, DVM, PhD. Graduate and Doctor of Medicine from the University of Zaragoza. Professor of Radiology and Physical Medicine at the University of Zaragoza. Head of the Image-guided minimally invasive surgery unit at the Clinical University Hospital of Zaragoza.

Amaya de Torre, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. Director of the Hispanidad Veterinary Clinic (Zaragoza, Spain). Associate professor of the Department of Animal Pathology, University of Zaragoza.

Gabriele Di Salvo, DVM. Graduate in Veterinary Medicine from the University of Messina. Gran Sasso Veterinary Clinica (Milan, Italy).

Azucena Gálvez, DVM, PhD. Graduate and Doctor of Veterinary Medicine from the University of Zaragoza. Director of the Torrero Veterinary Clinic (Zaragoza, Spain). Associate professor of the Department of Animal Pathology, University of Zaragoza.
Luis García, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. Director of the Ejea Veterinary Clinic (Zaragoza, Spain). Vice-President of the Spanish Society for Veterinary Laser and Electrosurgery.

Olivia Gironés, DVM PhD. Graduate and Doctor of Veterinary Medicine from the University of Zaragoza. Professor of the Department of Animal Pathology, University of Zaragoza.

Mª Cristina Iazbik, DVM. Graduate in Veterinary Medicine from the University of Buenos Aires. Director of Operations for the Blood Bank, Veterinary Medical Centre, The Ohio State University (Ohio, USA).

Manuel Jiménez, DVM, Dipl. MRCVS. Graduate in Veterinary Medicine from the University of Cordoba. European diploma from the College of Veterinary Surgery. Valencia Sur Veterinary Hospital (Valencia, Spain).

Alicia Laborda, DVM, PhD. Graduate and Doctor of Veterinary Medicine from the University of Zaragoza. Asst Professor of the Department of Animal Pathology, University of Zaragoza.

Clara Lonjedo, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. Silla Veterinary Clinica (Valencia, Spain).

Ángel Ortillés, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. PhD student at the University of Zaragoza.

David Osuna, DVM. Graduate in Veterinary Medicine from the Complutense University of Madrid. Director of the Mobile Veterinary Surgery Department.

Carolina Serrano, DVM, PhD. Graduate and Doctor of Veterinary Medicine from the University of Zaragoza. Asst Professor of the Department of Animal Pathology, University of Zaragoza.

Pedro Suay, DVM. Graduate in Veterinary Medicine from the University of Zaragoza. Silla Veterinary Clinica (Valencia, Spain).

Ana Whyte, DVM, PhD. Graduate and Doctor of Veterinary Medicine from the University of Zaragoza. Professor of the Department of Animal Pathology, University of Zaragoza.
Communication services

Web site
- Online visualisation of the sample chapter.
- Presentation brochure in PDF format.
- Author’s CV.
- Sample chapter compatible with iPad.

www.grupoasis.com/promo/bloodless_surgery
José Rodríguez, together with Guillermo Couto and Jorge Llinás, surprises us again with a new volume of the Small Animal Surgery collection, although this time he focuses on the application of bloodless surgery. The author and his colleagues use their wide experience to show readers the importance of ensuring appropriate haemostasis in surgical procedures.

The basic principles of haemostasis, their practical application in various clinical cases or the different techniques available are explained throughout the book, and the information is complemented by numerous images that will help the clinician to ensure haemostasis (making knots step by step, surgical procedures shown in sequences of images, etc.).

This work also stands out by including high-quality and very didactic videos, with which the reader will be able to gain valuable knowledge.
Table of contents

1. Introduction

2. Haemostasis and haemostatic disorders
 - Physiology of haemostasis for clinicians
 - Clinical signs in haemorrhagic syndromes
 - Techniques for the evaluation of haemostasis
 - Platelet count
 - Buccal mucosal bleeding time
 - Laboratory tests
 - Preoperative evaluation of haemostasis
 - Care of patients with coagulopathies or preoperative haemorrhages
 - Common coagulopathies in veterinary practice
 - Primary haemostatic disorders
 - Secondary haemostatic disorders
 - Mixed haemostatic disorders

3. Anticoagulation and fibrinolysis
 - Introduction
 - Thromboembolic diseases
 - Antiplatelet drugs, anticoagulants and fibrinolytics
 - Antiplatelet drugs
 - Anticoagulants
 - Fibrinolytics

4. Principles of blood transfusion
 - Introduction
 - Indications
 - Blood types
 - Blood typing
 - Blood administration
 - Complications of transfusion therapy
 - Crossmatching

5. Anaesthesia and perioperative bleeding
 - Introduction
 - Factors involved
 - Patient position
 - Mechanical ventilation
 - Changes in patient ventilation
 - Effects of anaesthetic drugs
 - Phenothiazines
 - Benzodiazepines
 - \(\alpha \) agonists
 - Opiates
 - Ketamine
 - Propofol
 - Alphaxalone
 - Sodium thiopental
 - Etomidate
 - Inhaled anaesthetics
 - Anticholinergics
Non-depolarising neuromuscular blocking drugs
Non-steroid anti-inflammatory drugs

Fluid therapy
Crystalloids
Colloids

Local and regional anaesthesia
Local infiltration with local anaesthetic and/or adrenaline
Epidural anaesthesia
Intravenous regional anaesthesia (Bier block)

Hypothermia
Behaviour of anaesthetic agents in cases of hypothermia

Acidosis

Anaesthetic techniques that minimise bleeding
Controlled hypotension
Permissive hypotension or hypotensive resuscitation
Acute normovolaemic haemodilution
Acute hypervolaemic haemodilution

6. Preoperative haemostatic techniques

Systemic prohaemostatic drugs
Lysine analogues
Ethamsylate
Other treatments

Supportive haemostatic treatments
Acupuncture
Homoeopathy

7. Intraoperative haemostasis techniques

Techniques for minimising blood loss during surgery

Preventative haemostasis
Hydrodissection
Ligatures
Vascular clamps and Rummel tourniquet
Haemostatic clips. Surgical staplers

Clinical applications in hepatic, splenic and pulmonary surgery

Definitive haemostasis
Haemostasis by compression
Topical haemostatic agents

Surgical haemostatic techniques
Haemostatic forceps
Ligatures
Technique
Sutures

Estimated intraoperative blood loss
Subjective method
Gravimetric method
Other methods
8. **High energy surgical equipment**

 Introduction

 Electrosurgery
 - Key concepts of electricity
 - Characteristics of the currents generated by an electrosurgical unit
 - How tissue responds to the passage of electricity
 - Safety in electrosurgery
 - Electrosurgical equipment and electrodes

 Laser surgery
 - Basic principles

 Laser in veterinary surgery
 - Basic elements of laser systems
 - Temporal output mode
 - Choice of laser
 - Interaction of laser with tissue
 - Tips for optimising the use of laser in surgery

 Other systems
 - Electrothermal bipolar coagulation

 Personal safety
 - Smoke
 - Risks and precautions in laser surgery

9. **Cryotherapy and cryosurgery**

 Local hypothermia. Cryotherapy

 Cryosurgery
 - Advantages and disadvantages of cryosurgery

 Cryogenic agents
 - Liquid nitrogen
 - Nitrous oxide
 - Dimethyl ether and propane

 Cryogenic agent application techniques
 - Application by pulverisation
 - Application by tube (contact terminal)
 - Application with swabs

 Warnings and postoperative care

10. **Postoperative bleeding**

 Introduction

 Causes of bleeding

 Assessment of bleeding severity

 Treatment
 - Initial treatment

 Evolution of postoperative bleeding

 Diagnosis and ultrasound monitoring of postoperative bleeding
11. Applications and surgical case studies

Maxillofacial surgery
 Surgical case study / Premaxillectomy

Ophthalmic surgery
 Surgical case study / Hotz-Celsus blepharoplasty with CO₂ laser

Ear surgery
 Surgical case study / Ablation of the external ear canal

Penile surgery
 Surgical case study / Partial amputation of the penis

Hepatic surgery
 Surgical case study / Hepatic lobectomy

Adrenal gland surgery
 Surgical case study / Adrenalectomy
 Adrenalectomy in ferrets

Cardiovascular surgery
 Surgical case study / Thoracoscopic pericardectomy
 Surgical case study / Tetralogy of Fallot

Perianal fistulae
 Surgical case study / Perianal fistulae resection

Brachycephalic syndrome
 Widening of nostrils
 Palatoplasty
 Excision of laryngeal saccules

12. References
As cardiovascular diseases in the human species are, nowadays, the first cause of death worldwide (ischaemic cardiopathy and ischaemic stroke in the first and second positions, respectively), antiplatelet drugs and anticoagulants are probably the most common group of prophylactic drugs in human medicine. They are usually used for primary prophylaxis, to prevent a likely event from occurring when there are sufficient risk factors.

In veterinary medicine, because of the physiological differences of carnivores, these drugs are barely used and always as a secondary prevention method; this means they are used for prophylaxis of a new thromboembolic event when one has already occurred or when there are concomitant risks (e.g. hyperadrenocorticism and sepsis).

First of all, it is important to distinguish between the concepts of thrombosis and thromboembolism.

Thrombosis is the formation of a clot (thrombus) inside a blood vessel, which obstructs blood flow through this vessel. An example is portal vein thrombosis, which can occur in animals affected by liver tumours.

Thromboembolism is the obstruction of a blood vessel by a clot that formed in a different part of the organism and travels through the bloodstream to a distal vessel.

An example is thromboembolism of the aortic bifurcation (saddle thromboembolism), in which the thrombus usually forms in the left heart and subsequently breaks loose and plugs the aortic bifurcation, thus causing ischaemia of the hind limbs.

Traditionally, three predisposing factors to thrombus formation in the organism are mentioned. These are known as Virchow’s triad: hypercoagulation, endothelial damage and blood stasis (Fig. 1).

If two of these three points are altered, it is assumed that there is predisposition to thrombosis. Table I shows the most important risk factors in veterinary clinical practice.
The coagulation and fibrinolysis systems are in constant equilibrium in the organism and self-regulate each other. When there is a regulation failure in any one of these systems, alterations of coagulation appear. Table II shows how this balance may be disturbed.

<table>
<thead>
<tr>
<th>Virchow's triad and corresponding diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood stasis</td>
</tr>
<tr>
<td>Hypovolaemia</td>
</tr>
<tr>
<td>Vascular alterations</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>Arrhythmias</td>
</tr>
<tr>
<td>Blood hyperviscosity</td>
</tr>
<tr>
<td>Venous obstruction due to neoplasia</td>
</tr>
<tr>
<td>Paralysis or immobility</td>
</tr>
</tbody>
</table>

Table II.

<table>
<thead>
<tr>
<th>Coagulation-fibrinolysis balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation</td>
</tr>
<tr>
<td>Increase in platelet activity and aggregation</td>
</tr>
<tr>
<td>Anomalous activation of coagulation factors</td>
</tr>
<tr>
<td>Increase in procoagulant levels (fibrinogen)</td>
</tr>
<tr>
<td>Activation of the extrinsic pathway (endothelial damage)</td>
</tr>
</tbody>
</table>

In the arterial system, due to the elevated blood pressure and to blood flow, conditions such as the immobilisation of the patient do not significantly affect thrombus formation and hypercoagulability plays a minor role in the process. However, turbulences, the interruption of laminar flow and shear stress lead to a very high presence of platelets in arterial thrombi. Strategies to inhibit arterial thrombogenesis should thus focus on antiplatelet therapy.

Venous thrombosis is significantly less common in animals in comparison with the human species. The risk factors associated with bipedalism, such as varicose veins or deep vein thrombosis of the legs, are not present in veterinary medicine.

As opposed to arterial thrombosis, venous thrombosis usually does not put the animal’s life at risk. A conservative therapy with anticoagulants is recommended for its treatment. There is no evidence that the early elimination of the thrombus by surgical means or with a thrombolytic treatment is beneficial in the long term, while on the other hand, haemorrhage secondary to the treatment may occur.

On the other hand, the venous system is greatly affected by blood stasis, patient immobility and the conditions of hypercoagulability. Mature venous thrombi contain a much lower amount of platelets. The strategies to limit venous thrombosis must mainly focus on anticoagulation, although they are also complemented by an antiplatelet treatment.

The clinical presentation of an arterial thromboembolism is usually acute, with very severe consequences (ischaemia of the area), and treatment must be immediate.

The most frequent causes of arterial and venous thromboembolism are different in veterinary and in human medicine.
Bloodless surgery

Surgical haemostatic techniques

José Rodríguez, Amaya de Torre, Carolina Serrano, Cristina Bonastre, Ángel Ortillés

Haemostatic surgical techniques are those performed by the surgeon during the procedure to prevent bleeding, using specific instruments and materials, such as forcipressure clamps, vascular clamps or surgical thread to make ligatures or to suture the vessels.

It is advisable to use curved haemostatic forceps to make it easy to see how they are placed, and that these forceps are only used for haemostasis. If used for other purposes, they may become misshapen and lose precision and efficacy.

Surgical haemostasis covers all technical procedures that the surgeon may use to control bleeding caused during surgery.

Haemostatic forceps

Haemostatic forceps use two complementary mechanisms. One hand they occlude the vessel to prevent blood loss; on the other they damage the vessel wall to encourage clotting.

Depending on the diameter of the vessel and blood pressure, the haemostasis achieved will be definitive or temporary. If the vascular diameter is small, haemostasis will be achieved in minutes and the forceps can be removed safely. If the vessel is larger and the blood flow expels the clot formed, haemostasis must be completed with the ligature or coagulation of the vessel.

There is a wide range of haemostatic forceps. The authors prefer Halsted mosquito clamps and Rochester-Pean forceps (Fig. 1).

Recommendations for the correct use of haemostatic forceps:

■ Use the smallest size haemostatic forceps possible.

■ Curved forceps are preferable over straight ones so that the surgeon’s hand does not interfere with the view of the bleeding vessel.

■ Hold the forceps with the dominant hand to ensure correct handling (Fig. 2).

■ The forceps should only trap the damaged vessel, or a minimal amount of surrounding tissue.

■ For the occlusion of superficial vessels:
 ■ If the vessel is clearly identifiable, clamp it directly with the instrument tip (Fig. 3).
 ■ If the source of bleeding is observed but not the vessel, clamp the smallest amount of adjacent tissue possible with the convex part of the forceps tip (Fig. 4).

■ In order to occlude important and deep blood vessels, and vascular pedicles:
 ■ Place the forceps perpendicular to the vessel with the convex part turned inwards. This facilitates smooth suturing and helps subsequent ligature (Fig. 5).
 ■ Use the branches of the forceps rather than the tips.
 ■ It must be ensured that no adjacent structures have been trapped.

Haemostasis by clamping of low pressure blood vessels is achieved by waiting several minutes. In order to achieve definitive haemostasis of small vessels the torsion technique can also be used. This consists of clamping the vessel and twisting the forceps oneself several times until it snaps. This method has the advantage of not leaving any sutures inside the body, and can be effective in vessels with a diameter of less than 0.5 mm.

Watch this video on the electronic version
Application of haemostatic forceps on a superficial vessel and definitive haemostasis created by torsion.

Fig. 1. Haemostatic forceps:
A. Rochester-Pean.
B. Halsted mosquito clamp.
Surgical haemostatic techniques are those performed by the surgeon during the procedure to prevent bleeding, using specific instruments and materials, such as forcipressure clamps, vascular clamps or surgical thread to make ligatures or to occlude the vessel. Haemostatic surgical techniques are those the surgeon may use to control bleeding caused during surgery. Surgical haemostasis covers all technical procedures that the surgeon can perform to achieve definitive or temporary haemostasis.

Halsted mosquito clamps and Rochester-Pean forceps (Fig. 1) are examples of haemostatic forceps. The forceps should only trap the damaged vessel, or a minimal amount of surrounding tissue. The closure of superficial blood vessels should be made using the tip of haemostatic forceps. For the occlusion of superficial vessels, the forceps must be facing the surgeon. This makes it easier to slide a suture thread along the convex part, turned towards the patient, to create the relevant ligature.

If the source of bleeding is observed but not the vessel, clamp the vessel on itself several times until it snaps. This method has the advantage of not leaving any sutures inside the body, and can be effective in vessels with a diameter of less than 0.5 mm.

If the vessel is clearly identifiable, clamp it directly with the instrument tip (Fig. 3). The forceps should be held in the dominant hand, following its curvature, without inserting them through the rings. The index and middle fingers rest on the tips of the forceps to keep them steady and use them precisely.

If the point of haemorrhage cannot be seen clearly, the tissue surrounding the vessel can be clamped using the branches of the instrument. The minimum perivascular tissue possible should be affected and with as little trauma as possible. Regardless of how the blood vessel is clamped, the forceps should be placed with the convex edge turned inwards to help the suture run smoothly.

Haemostatic forceps use two complementary mechanisms. One consists of clamping the vessel and twisting the forceps on them—this facilitates smooth suturing and helps to view the vessel correctly and place it as precisely as possible. The other they damage the vessel wall to encourage clotting.

In order to occlude important and deep blood vessels, and vascular pedicles, the haemostatic forceps should be placed with the convex part, turned towards the patient, to create the relevant ligature. If the vessel can be clamped using the branches of the instrument, the minimum perivascular tissue possible should be affected and with as little trauma as possible.

In order to see how they are placed, and that these forceps are easy to see, it is advisable to use curved haemostatic forceps to make it easy to see how they are placed, and that these forceps are easy to see. Depending on the diameter of the vessel and blood pressure, the haemostasis achieved will be definitive or temporary. If the vessel is larger and the blood flow expels the clot formed, haemostasis must be completed with other they damage the vessel wall to encourage clotting.

Recommendations for the correct use of haemostatic forceps:

- The haemostatic forceps should be placed with the convex edge turned inwards to help the suture run smoothly.
- Use the branches of the forceps rather than the tips.
- Place the forceps perpendicular to the vessel with the convex part of the forceps tip.
- The forceps should be held in the dominant hand, following its curvature.
- Use the smallest size haemostatic forceps possible.
- The forceps should only trap the damaged vessel, or a minimal amount of surrounding tissue.
- If the point of haemorrhage cannot be seen clearly, the tissue surrounding the vessel can be clamped using the branches of the instrument. The minimum perivascular tissue possible should be affected and with as little trauma as possible.
Wide vascular pedicle

In the case of a wide vascular pedicle, there is an expansive force that makes it difficult to complete a firm ligature.

- The suture thread is passed around the vascular pedicle and the first knot made. In this case two or three twists are made to increase friction on the thread and prevent it slipping backwards (Fig. 10).
- At the same time as the surgeon tightens the first knot, an assistant opens the haemostatic forceps slightly, without removing them, to allow the tissue to be compressed (Fig. 11).
- The assistant then closes the forceps again to facilitate the complete of subsequent knots and control any possible bleeding if the ligature is not completed correctly.

Fig. 10. The suture thread is wrapped around the vascular pedicle at a certain distance from the forceps to prevent it sliding off.

Fig. 11. On tightening the first knot the haemostatic forceps are released slightly to allow the ligature to be closed with no tension.

Release the pressure on the haemostatic forceps to allow the tissue to pucker while at the same time tightening the first knot of the ligature. The forceps should not be completely removed until the ligature is finished.

*Watch this video on the electronic version
Completion of a modified Miller knot for the ligature of a wide vascular pedicle.*

For the ligature of wide pedicle it is advisable to use the Miller knot.
Hidden vascular pedicle

If the bleeding vessel is not identified and cannot be clamped, the haemorrhage can be stopped using a broad mass stitch holding the tissue around the source of the bleeding (Fig. 12).

Sutures

In general, sutures bring the tissue edges together and encourage haemostasis, although there are certain suture patterns that stem bleeding of the sutured tissue even further.

Reverdin’s continuous suture or the Ford interlocking suture will bring the edges of the wound tighter together than a simple continuous suture and are more haemostatic (Fig. 13).

Fig. 12. Completion of a simple mass stitch. This technique can be used to close unidentified blood vessels or ones that are difficult to occlude using haemostatic forceps, as in this case.

The Ford interlocking suture achieves a closer fit along the edges of the wound and better haemostasis.

Fig. 13. The Ford interlocking suture is an adaptation of the simple continuous suture in which, after each stitch is made, the thread is passed through the previous loop with the needle. This achieves a better fit of the edges of the wound and greater haemostasis, as can be seen in this case where the technique has been used to suture the urethral mucous membrane to the skin, after a scrotal urethrostomy.
This case presents a patient suffering from Cushing syndrome as a result of a neoplasm of the left adrenal gland. This surgery is highly delicate and must be performed meticulously.

A supra umbilical laparotomy is performed for exploration of the liver and regional lymphatic glands to search for tumour metastases. Intestinal loops are moved and the adrenal area is isolated with dampened compresses and gauze (Fig. 1).

The delicate and precise dissection of the periglandular area is completed, avoiding injury to the large blood vessels close to the vena cava or renal vessels (Fig. 2).

The phrenicoabdominal vein is located, dissected and closed, on its path through the adrenal gland. The purpose is to avoid the vasoactive substances released upon manipulation of the gland reaching the bloodstream (Figs. 3 and 4).

Preventative haemostasis of the phrenicoabdominal vein is performed using synthetic long-term absorbable ligatures or vascular clips.

Fig. 1. Preparation of the surgical field by displacing intestinal loops and hepatic lobes close to the tumorous gland. The stability of this preparation is very important in order to simplify the surgical technique and control the dissection, section and haemostasis processes as well as possible.

Fig. 2. The dissection of the periglandular tissue should be performed meticulously and with great care, so as not to damage major nearby blood vessels, such as the left renal vein, if the affected gland is on this side, or the vena cava, if the tumorous gland is on the right.

Fig. 3. In this case, the gland was firmly adhered to the left renal vein (arrow). After release, the phrenicoabdominal vein is dissected and closed to prevent vasoactive substances or tumorous cells from entering the bloodstream.
Bloodless surgery

Fig. 3. In this case, the gland was firmly adhered to the left renal vein (arrow). After release, the phrenicoabdominal vein is dissected and closed to prevent vasoactive substances or tumorous cells from entering the bloodstream.

A supra umbilical laparotomy is performed for exploration of the liver and regional lymphatic glands to search for tumour metastases. Intestinal loops are moved and the adrenal area is isolated with dampened compresses and gauze (Fig. 1).

The delicate and precise dissection of the periglandular area is completed, avoiding injury to the large blood vessels close to the vena cava or renal vessels (Fig. 2).

The phrenicoabdominal vein is located, dissected and closed, on its path through the adrenal gland. The purpose is to avoid the vasoactive substances released upon manipulation of the gland reaching the bloodstream (Figs. 3 and 4).

Fig. 1. Preparation of the surgical field by displacing intestinal loops and hepatic lobes close to the tumorous gland. The stability of this preparation is very important in order to simplify the surgical technique and control the dissection, section and haemostasis processes as well.

Fig. 2. The dissection of the periglandular tissue should be performed meticulously and with great care, so as not to damage major nearby blood vessels, such as the left renal vein, if the affected gland is on this side, or the vena cava, if the tumorous gland is on the right.

Fig. 4. Preventative haemostasis of the phrenicoabdominal vein is easily achieved using vascular clips as observed in this image.

All the small vessels around the gland are dissected and coagulated using bipolar clamps to prevent bleeding (Fig. 5).

Fig. 5. The adrenal gland has a large number of peripheral blood supply vessels. Preventative haemostasis should be performed using bipolar clamps before sectioning.

After removal of the neoplasm and prior to replacing the abdominal organs and closing the wound, successful haemostasis of the affected area must be confirmed (Fig. 6).

Fig. 6. Before completing the procedure, it must be checked that haemostasis has been successful during the surgery. This image shows the vascular clips used to close the phrenicoabdominal vein (white arrows) and the numerous coagulated arterial vessels (blue arrows).
In some cases a tumorous thrombus can be identified inside the vena cava (Fig. 7). In this situation the vena cava can be clamped in order to perform a venotomy to remove the clot.

Intraoperative or immediate postoperative mortality can be high, caused by uncontrolled bleeding, thromboembolism, peritonitis, renal failure, infection and pancreatitis. For this reason, the surgical technique must be impeccable and thromboembolism must be avoided.

Watch this video on the electronic version
Adrenalectomy of the left gland in a patient with hyperadrenocorticism secondary to a neoplasia of this gland.

Watch this video on the electronic version
Complex adrenalectomy with adhesions and large amount of fatty tissue in the retroperitoneal space.

In these patients it is advisable to close the abdominal cavity with non-absorbable material.

Fig. 7. If the neoplasim of the adrenal gland has invaded the vena cava the tumorous thrombus can be observed (arrow) through the venous wall.
Editorial Servet, a division of Grupo Asís, has become one of the reference publishing companies in the veterinary sector worldwide. More than 15 years of experience in the publishing of contents about veterinary medicine guarantees the quality of its work. With a wide national and international distribution, the books in its catalogue are present in many different countries and have been translated into nine languages to date: English, French, Portuguese, German, Italian, Turkish, Japanese, Russian and Chinese.

Its identifying characteristic is a large multidisciplinary team formed by doctors and graduates in Veterinary Medicine and Fine Arts, and specialised designers with a great knowledge of the sector in which they work. Every book is subject to thorough technical and linguistic reviews and analyses, which allow the creation of works with a unique design and excellent contents.

Servet works with the most renowned national and international authors to include the topics most demanded by veterinary surgeons in its catalogue. In addition to its own works, Servet also prepares books for companies and the main multinational companies in the sector are among its clients.